A NOTE ON MIXING TRANSFORMATIONS

BY

J. R. BLUM*

ABSTRACT

Let $(\Omega, \mathscr{F}, \mu)$ be a probability space and T a 1-1, onto, measure-preserving transformation. Necessary and sufficient conditions are given for T to be mixing, in terms of union of iterates of sets.

1. Let $(\Omega, \mathscr{F}, \mu)$ be a probability space and τ a 1-1, onto, bimeasurable and measure-preserving transformation. τ is ergodic if

$$
\lim_{n} \frac{1}{n} \sum_{j=1}^{n-1} \mu(\tau^{j} A \cap B) = \mu(A)\mu(B)
$$

for all A and $B \in \mathscr{F}$, and τ is mixing if

$$
\lim_{n} \frac{1}{n} \sum_{j=1}^{n-1} |\mu(\tau^{j} A \cap B - \mu(A)\mu(B)| = 0
$$

for all such sets. From now on all sets mentioned will be assumed to be in \mathcal{F} .

Let k be an infinite sequence of positive integers and for a set A define $A(k) = \int_{k_n \in \mathbb{R}} t^{k_n} A$. It is well known that τ is ergodic if and only if $\mu[A(k)] = 1$ for all positive A [i.e., $\mu(A) > 0$], and k the sequence of all positive integers. From this it follows at once that τ is completely ergodic, i.e. every power of τ is ergodic, if and only if $\mu[A(k)] = 1$ for every positive A and every arithmetic sequence k . It is therefore of some interest to find out how much this condition must be strengthened to obtain mixing, and we do so in this note.

We shall say k is a (1,2)-sequence if $k_{n+1} - k_n = 1$ or 2, and whenever $k_{n+1} - k_n = 2$ then $k_{n+2} - k_{n+1} = 1$. We shall use the customary definitions of asymptotic (upper, lower) density of a sequence.

THEOREM. Let τ be completely ergodic. Then τ is mixing if and only if there

[•] Research supported by N.S.F. Grant GP-8290. Part of the research in this paper was eartied out while the author was on Sabbatical Leave at the Israel Institue of Technology.

Received December 4, 1970

exists $\varepsilon > 0$ *such that* $\mu[A(k)] = 1$ *for every* (1,2)-sequence of asymptotic lower *density* $\geq 1 - \varepsilon$, and every positive A.

The necessity of the condition follows at once since if τ is mixing then $\lim_{\mu} \mu(\tau^n A \cap B) = \mu(A)\mu(B)$ for every A and B, except possibly along a sequence k which may depend on A and B, but has asymptotic density zero for every A and B. Thus if k has positive asymptotic lower density and for some positive A we have $\mu[A(k)] < 1$ then we let $B = (A(k))^c$ to obtain a contradiction.

For the sufficiency we shall need to introduce the spectrum of τ . By this we mean the spectrum of the unitary operator U defined on $L_2(\Omega, \mu)$ and given by $Uf(x) = f(\tau x)$ for $f \in L_2$. Now it is well known that τ is completely ergodic if and only if every eigenvalue λ of U, distinct from 1, is not a root of unity; and moreover τ is mixing if and only if U has no eigenvalues distinct from 1. Thus let us suppose to the contrary that U has an eigenvalue λ which is not a root of unity. If f is the associated eigenfunction it is also known that $|f|$ is a constant, provided τ is ergodic. We shall have occasion to use the following lemma which has some independent interest.

LEMMA. Let $|f| = 1$, and let B be any Borel subset of the unit circle. Then $\mu[f^{-1}(B)] = m(B)$, where m is normalized Lebesgue measure on the unit circle.

PROOF. Assume first that B is a subinterval of the circle and let $A = f^{-1}(B)$. Then $\lim_{n\to\infty}1/n\sum_{i=1}^{n-1}\chi_A(\tau^i x)=\mu(A)$ on a set of μ measure one, where χ_A is the set characteristic function of A. Let x be in this set and note that $\tau, x \in A$ if and only if $f(\tau^j x) = \lambda^j f(x) \in B$. Thus $1/n \sum_{j=1}^{n-1} \chi_A(\tau^j x)$ is also the proportion of times that $\lambda^{j} f(x)$ is in B. But from the Weyl equidistribution theorem it follows that this proportion converges to $m(B)$. Once we have this for single interval, it is also true for all intervals with rational endpoints on the same set of μ measure one, and therefore for all intervals. The rest follows from standard arguments.

To complete the proof of the theorem, we shall assume that $\lambda = e^{i\theta}$ is small in the sense that $0 < \theta \le \pi/20$, say. We can do this since if λ is an eigenvalue of U. so is λ^n for all integers n. Suppose that $\varepsilon > 0$ is given and that δ is so chosen that $m\{[1,e^{i\delta}]\} < \varepsilon/2$ and also $0 < \delta < \theta/20$. Let $I = [1,e^{i\delta}],$ and $A = f^{-1}(I)$. Note that $f(\tau^k A) = [\lambda^k, \lambda^k e^{i\delta}]$. Define the sequence k by choosing $m \in k$ providing $f(\tau^m A) \cap I = \emptyset$, or equivalently provided $A \cap \tau^m A = \emptyset$. Then clearly k is a (1,2)-sequence and the density condition is easily verified. On the other hand $\mu(A) = m(I) > 0$ and $A(k) \cap A = \emptyset$. Thus $\mu[A(k)] < 1$, and the theorem is proved.

THE UNIVERSITY OF NEW MEXICO